3,778 research outputs found

    Effect of Anionic Salt and Highly Fermentable Carbohydrate Supplementations on Urine pH and on Experimentally Induced Hypocalcaemia in Cows

    Get PDF
    The objective of this experiment was to determine the effect of dietary grain on calcium homeostasis. Six rumen-fistulated dairy cows with 3 or more previous lactations and no history of parturient paresis were randomly assigned to a sequence of diets in a crossover study with 4 periods of 10 days each. Dietary treatments were: A control ration consisting of wrap grass silage alone (1), the control ration supplemented with ammonium chloride and ammonium sulphate salt solution (2), control ration following a period with supplementation (3) and control ration supplemented with increasing amounts of barley from 4 to 10 kg/cow per day, expected to produce subclinical rumen acidosis (4). Daily intake of the diets was adjusted to 14 kg DM/cow per day. On day 11, the calcium-regulating mechanisms in cows were challenged until recumbency by a standardized intravenous EDTA infusion and cows were left to recover spontaneously. Anion supplementation and the feeding of highly fermentable carbohydrate lowered urine pH below 7.0 due to subclinical acidosis. During spontaneous recovery from EDTA induced hypocalcaemia, the cows more quickly regained a whole blood free calcium concentration of 1.00 mmol/L if they had most recently been supplemented with either anionic salts or with increasing amounts of barley, as compared to the basic ration. It is concluded that so-called slug-feeding or 'steaming up' with highly fermentable carbohydrates before parturition in milk fever susceptible cows enhanced calcium homeostasis similar to the effect seen in cows on anionic diets

    A combined reduced order‐full order methodology for the solution of 3D magneto‐mechanical problems with application to magnetic resonance imaging scanners

    Get PDF
    The design of a new magnetic resonance imaging (MRI) scanner requires multiple numerical simulations of the same magneto‐mechanical problem for varying model parameters, such as frequency and electric conductivity, in order to ensure that the vibrations, noise, and heat dissipation are minimized. The high computational cost required for these repeated simulations leads to a bottleneck in the design process due to an increased design time and, thus, a higher cost. To alleviate these issues, the application of reduced order modeling techniques, which are able to find a general solution to high‐dimensional parametric problems in a very efficient manner, is considered. Building on the established proper orthogonal decomposition technique available in the literature, the main novelty of this work is an efficient implementation for the solution of 3D magneto‐mechanical problems in the context of challenging MRI configurations. This methodology provides a general solution for varying parameters of interest. The accuracy and efficiency of the method are proven by applying it to challenging MRI configurations and comparing with the full‐order solution

    smt: a Matlab structured matrices toolbox

    Full text link
    We introduce the smt toolbox for Matlab. It implements optimized storage and fast arithmetics for circulant and Toeplitz matrices, and is intended to be transparent to the user and easily extensible. It also provides a set of test matrices, computation of circulant preconditioners, and two fast algorithms for Toeplitz linear systems.Comment: 19 pages, 1 figure, 1 typo corrected in the abstrac

    The structure of iterative methods for symmetric linear discrete ill-posed problems

    Get PDF
    The iterative solution of large linear discrete ill-posed problems with an error contaminated data vector requires the use of specially designed methods in order to avoid severe error propagation. Range restricted minimal residual methods have been found to be well suited for the solution of many such problems. This paper discusses the structure of matrices that arise in a range restricted minimal residual method for the solution of large linear discrete ill-posed problems with a symmetric matrix. The exploitation of the structure results in a method that is competitive with respect to computer storage, number of iterations, and accuracy.Acknowledgments We would like to thank the referees for comments. The work of F. M. was supported by Dirección General de Investigación Científica y Técnica, Ministerio de Economía y Competitividad of Spain under grant MTM2012-36732-C03-01. Work of L. R. was supported by Universidad Carlos III de Madrid in the Department of Mathematics during the academic year 2010-2011 within the framework of the Chair of Excellence Program and by NSF grant DMS-1115385

    Menthol cigarette smoking and nicotine dependence

    Get PDF
    Since tobacco use is driven by dependence on nicotine, the primary addictive substance in tobacco, much research has focused on nicotine dependence. Less well understood, however, is the role that menthol plays in nicotine dependence. This review seeks to examine what role, if any, menthol plays in nicotine addiction in adults and youth. Based on research examining several indicators of heaviness of nicotine addiction, including time to first cigarette upon waking, night waking to smoke, as well as some other indications of dependence, it is suggested that menthol cigarette smokers are more heavily dependent on nicotine. Although other indicators of nicotine dependence, including number of cigarettes per day and the Fagerstrom Test of Nicotine Dependence, failed to consistently differentiate menthol and non-menthol smokers, these indicators are thought to be less robust than time to first cigarette. Therefore, though limited, the existing literature suggests that menthol smokers may be more dependence on nicotine

    Black Holes in Modified Gravity (MOG)

    Get PDF
    The field equations for Scalar-Tensor-Vector-Gravity (STVG) or modified gravity (MOG) have a static, spherically symmetric black hole solution determined by the mass MM with two horizons. The strength of the gravitational constant is G=GN(1+α)G=G_N(1+\alpha) where α\alpha is a parameter. A regular singularity-free MOG solution is derived using a nonlinear field dynamics for the repulsive gravitational field component and a reasonable physical energy-momentum tensor. The Kruskal-Szekeres completion of the MOG black hole solution is obtained. The Kerr-MOG black hole solution is determined by the mass MM, the parameter α\alpha and the spin angular momentum J=MaJ=Ma. The equations of motion and the stability condition of a test particle orbiting the MOG black hole are derived, and the radius of the black hole photosphere and the shadows cast by the Schwarzschild-MOG and Kerr-MOG black holes are calculated. A traversable wormhole solution is constructed with a throat stabilized by the repulsive component of the gravitational field.Comment: 14 pages, 3 figures. Upgraded version of paper to match published version in European Physics Journal

    Using magnetoencephalography to investigate brain activity during high frequency deep brain stimulation in a cluster headache patient

    Get PDF
    PURPOSE: Treatment-resistant cluster headache can be successfully alleviated with deep brain stimulation (DBS) of the posterior hypothalamus [1]. Magnetoencephalography (MEG) is a non-invasive functional imaging technique with both high temporal and high spatial resolution. However, it is not known whether the inherent electromagnetic (EM) noise produced by high frequency DBS is compatible with MEG. MATERIALS AND METHODS: We used MEG to record brain activity in an asymptomatic cluster headache patient with a DBS implanted in the right posterior hypothalamus while he made small movements during periods of no stimulation, 7 Hz stimulation and 180 Hz stimulation. RESULTS: We were able to measure brain activity successfully both during low and high frequency stimulation. Analysis of the MEG recordings showed similar activation in motor areas in during the patient's movements as expected. We also observed similar activations in cortical and subcortical areas that have previously been reported to be associated with pain when the patient's stimulator was turned on or off [2,3]. CONCLUSION: These results show that MEG can be used to measure brain activity regardless of the presence of high frequency deep brain stimulation

    Three Dimensional Electrical Impedance Tomography

    Get PDF
    The electrical resistivity of mammalian tissues varies widely and is correlated with physiological function. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a non-invasive means of imaging the internal conductivity distribution of the human body. But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem. This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane. A few studies have attempted three-dimensional EIT image reconstruction, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening

    Multidirectional Subspace Expansion for One-Parameter and Multiparameter Tikhonov Regularization

    Get PDF
    Tikhonov regularization is a popular method to approximate solutions of linear discrete ill-posed problems when the observed or measured data is contaminated by noise. Multiparameter Tikhonov regularization may improve the quality of the computed approximate solutions. We propose a new iterative method for large-scale multiparameter Tikhonov regularization with general regularization operators based on a multidirectional subspace expansion. The multidirectional subspace expansion may be combined with subspace truncation to avoid excessive growth of the search space. Furthermore, we introduce a simple and effective parameter selection strategy based on the discrepancy principle and related to perturbation results
    corecore